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MTL in Deep Learning

» Different from single task learning
» Training multiple tasks simultaneously to exploit task
relationships. (Rusu et al. 2016)
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Figure 1: figure form vandenhende(2020)



Exploit Task Relationships

> The key challenge in multi-task learning: Exploiting
(statistical) relationships between the tasks so as to improve
individual and/or overall predictive accuracy (in comparison to
training individual models)!



End-to-End Multi-Task Learning with Attention (S. Liu,
Johns, and Davison 2019)

P> The attention module is designed to allow the task-specific
network to learn task-related features, by applying a soft
attention mask to the features in the shared network.

The Architecture Design

» MTAN consists of two components: a single shared net- work,
and K task-specific attention networks.



The Architecture Design(Cont.)

» each task-specific network consists of a set of attention
modules

» The attention applies a soft attention mask to a particular layer
of the shared network, to learn task-specific features.

» The dependence of attention on features learned jointly to
maximize the generalization of the shared features across
multiple tasks.
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Task Specific Attention Module

The task-specific features é,(J) computed by element-wise
multiplication of the attention masks with the shared features:
3 = a,(j) @ pV)

1



The Model Objective

K
Leot(X, Yi:k) = > AiLi(X, Vi)

Y; as one task with total three tasks for evaluation.

For semantic segmentation:

L1(X, Y1) = —723/1 p.q)log Y1(p, q)

For depth estimation:

Lo(X, Y1) = ZIYz p.q) — log Ya(p, q)|

For surface normals

'C (X Y3 *7ZY3 pP,q |Og Y3(P, )



Evaluation

Dynamic Weight Average (DWA)

elt) = Kexp(wk(t—l)/T)7 Li(t—1)
2iexp(wi(t —1)/T) Li(t—2)

Here wy(+,) calculates the relative descending rate. T represents a

temperature which controls the softness of task weighting. T

enough large, then A\; ~ 1. softmax op multiplied by K, ensures that
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Figure 5: Visualisation of the first layer of 7-class semantic
and depth attention features of our proposed network. The
colours for each image are rescaled to fit the data.



Attentive single-tasking of multiple tasks (Maninis,
Radosavovic, and Kokkinos 2019)

The single-tasking multiple tasks modifies its behavior through
task-dependent feature adaptation, or task attention. It gives the
network the ability to accentuate the features that are adapted to
tasks.



Task-specific feature modulation

two tasks A and B that share a common feature tensor F(x,y, c).
c=1,2,---,C are the tensor channels.Assume subset S4 is better
suited for task A.

FA(X7y7C):mA'F(X¢y>C) (1)
where ma|c] € {0,1}

Residual Adapters

shunning features that do not contribute to the task.
La(x) = x + L(x) + RAa(x), (2)

where L(x) denotes the default behavior of a residual layer, RA4 is
the task-specific residual adapter of task A. and La(x) is the
modified layer.



Adversarial Task Disentanglement

> a shared representation has better memory/computation
complexity, every task can profit by having its own ‘space’.

» gradients used to train the shared parameters are statistically
indistinguishable across tasks.
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Figure 4. Double backprop [10] exposes the gradients computed
during backprop (row 1) by unfolding the computation graph of
gradient computation (row 2). Exposing the gradients allows us
to train them in an adversarial setting by using a discriminator,
forcing them to be statistically indistinguishable across tasks (row
3). The shared network features « then receive gradients that have
the same distribution irrespective of the task, ensuring that no task
abuses the shared network, e.g. due to higher loss magnitude. The



Adversarial Task Disentanglement(Cont.)

The optimization problem:

min max L(D(gt(WN)v WD)’ t)7

wD  wN
where g:(wp) is the gradient of task t computed with wy, D(-, wp)
is the discriminator’s output for input. And L(-, t) the cross-entropy
loss for label t that indicates the source task of the gradient.



Summary

1 1
0 + 0
-1 -1
= 2 s 2
& -3 * L -3
o 4 o 4
S -5 S -5
T -6 & & method S -6 o method
L 7 - ¢ ST baseline ¢ 7 A % ST baseline
»(B- -8 © Adv SERA g -8 © AdvSERA
° -9 backbone & SE o -9 backbone ¢ SE
-10 i — R-101 @ SE Dec-only = -10 x — R-101 @ SE Dec-only
11 — R50 A Adv -11 — R50 A Adv
-12 $ R-26  © MT baseline -12 R-26  © MT baseline
©
8 25 26 27 28 18 25 26 27 28
number of parameters (M) number of multiply-adds (B)

Figure 5. Performance vs. Resources: Average relative drop (A, %) as a function of the number of parameters (left), and multiply-adds
(right), for various points of operation of our method. We compare 3 different backbone architectures, indicated with different colors.
‘We compare against single-tasking baseline (ST baseline), and multi-tasking baseline (MT baseline). Performance is measured relative to
the best single-tasking model (R-101 backbone). An increase in performance comes for free with adversarial training (Adv). Modulation
per task (SE) results in large improvements in performance, thanks to the disentangled graph representations, albeit with an increase in

ional cost if used th h the network, instead of only on the decoder (SE Dec-only vs. SE). We observe a drastic drop in
number of parameters needed for our model in order to reach the performance of the baseline (SE, Adv). By using both modulation and
adversarial training (Adv SE RA), we are able to reach single-task performance, with far fewer parameters.
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Gradient Adversarial Training of Neural Networks (Sinha
al. 2018)

Adversarial defense
The adversarial gradient signal o flowing forward in the main
network can be shown to be,

QH-l — l+1 IG)O'( ) (3)
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GREACE: adapts the cross-entropy loss function

» add weight to the negative classes whose gradient tensors are
similar to those of the primary class.

» The weight is evaluated using soft-max distribution from the
auxiliary network. In math,

V,C = V,C+p- o(a)lyz, (4)

where a, 3 are the output activations from the main and
auxiliary network respectively. o is the soft-max function, 3 is
a penalty parameter.

The combined objective for adversarial defence is:
mb_’in .7(9, x,y) + amax J(HA, VIO, x,y),y).
6
The J denotes the GREACE, J denote the standard cross-entropy

and J indicates the masked cross-entropy, and « is a weight
parameter for the auxiliary network’s loss.



Different scenarios

Knowledge distillation

>
>
>

student’s output distribution S(x)

teacher’s output distribution T (x)

A solution for student, S(x) which jointly minimizes the
supervised loss and VS(x) = V T(x) exists.

GREAT procedure: mimics GAN training procedures
Objective to be optimized is:

(1-a) mein J(0,x,y)+ « m9in max D(6,x,y)

(5)
D(0,x,y) = Eeavr(x) log f(t,w) + Esuvy(o,x,y) log(L — f(s,w))
(6)



Multi-task learning

Gradient-alignment layers(GAL) are placed after the shared encoder
and before each of the task-specific decoders. And they are only

during the backward pass, i.e. the GALs are dropped during forward
inference.

GREAT for Multi-task Learning
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Multi-task learning(Cont.)

Algorithm 3 Algorithm for multi-task learning using GREAT on GALs

1: procedure TRAIN(G, 6,wi, i) > Requires inputs z, labels for tasks y;
2 i =1, O < Ji(0,ws, z,y:) > Initialize GAL tensors with ones and initial task losses
3 while j < jmae do
4 Ci + Ji(0,ws, x,y:)/CY Vi > Normalize task losses after forward pass
5: g[ — VJi(wi,z,y:) Vi > Evaluate task gradient tensors w.r.t. feature f
6: w;i(j) > wi(G+1) Vi > Update weights in decoders using VC;
7 0(j) > 0(j +1) > Update weights in encoder using >, gif'yz'
8 ¢« J (9, gif Vi ) > Task classification loss by forward pass
9: é(j) — é( j+1) > Update weights in task classifier network using C'
10: V., C+—-vJ (0, afvi, 9) > Evaluate reversed gradient w.r.t -y;

> j is current iteration

11: Y() = v@G+1) Vi > Update weights in GALs using V,,C




Results

CIFAR-10 mini-ImageNet
Method | CNN(S)+RN(T) | RN(S)+RNx(T) | RN(S)+RN152(T) | RN(S)+RN152(T)
100% 5% 100% 5% 100% 5% 100% 5%
Baseline | 84.74 | 6541 | 93.19 | 66.73 | 59.24 14.41 58.02 13.79
Distillation | 85.69 | 66.45 | 93.65 | 67.69 | 51.72 16.73 46.77 14.00
GREAT | 85.72 | 66.55 | 93.43 | 67.80 | 59.80 16.82 56.31 14.02
Table 3: Results of knowledge distillation on CIFAR-10 and mini-ImageNet. RN refers to ResNet-18.
The third row indicates the % of all train samples used during training. GREAT performs best in the
sparse regime for all combinations and better than distillation on all but 1 scenario.

CIFAR-10 NYUv2
Method Class Color | Edge Auto | Depth | Normal | Keypoint
% Error | RMSE | RMSE | RMSE | RMSE | 1-lcosl RMSE
Equal 24.0 0.131 | 0.349 | 0.113 | 0.861 0.207 0.407
Uncertainty 26.6 0.111 | 0.270 | 0.090 | 0.796 0.192 0.389
GradNorm 23.5 0.116 | 0.270 | 0.091 | 0.810 0.169 0.377
GREAT 24.2 0.114 | 0.252 | 0.087 | 0.779 0.167 0.382
Table 4: Test errors of multi-task learning on the CIFAR-10 and NYUv2 datasets. GREAT performs
best on 2 tasks each for CIFAR and NYUv2, and has comparable performance on the other tasks.




Summary

P strong defense to both targeted and non-targeted adversarial
examples

P can easily distill knowledge from different teacher networks
without heavy parameter tuning

P aid multi-task learning by tuning a gradient alignment layer.

» which is similar to the architecture in (Ganin and Lempitsky
2015)



Adversarial Multi-task Learning for Text Classification (P.
Liu, Qiu, and Huang 2017)

» Hazard: the shared and private latent feature spaces from
interfering with each other. And it will cause the capacity of
shared space wasted by some unnecessary features.

» Proposed adversarial training to ensure that the shared feature
space simply contains common and task-invariant information.

A B A B

(a) Shared-Private Model  (b) Adversarial Shared-Private Model
Figure 1: Two sharing schemes for task A and task
B. The overlap between two black circles denotes
shared space. The blue triangles and boxes repre-

sent the task-specific features while the red circles
denote the features which can be shared.



Multi-task Learning for Text Classification

1. Fully-Shared Model (FS-MTL)
2. Shared-Private Model (SP-MTL)

Lm
soft task
T b

LSTM

™ >
Ln
softmax task

(a) Fully Shared Model (FS-MTL)

™ LSTM @—» LY .

LSTM

" ——»|LSTM — L} &

(b) Shared-Private Model (SP-MTL)




MTL with LSTM blocks:

sk = LSTM(x¢, sk 1,65), (7)
h& = LSTM(x¢, h¥_1,6%) (8)

> feed into corresponding task-specific softmax layer for
classification.

K
LTask = Z O‘kL(y(k)ay(k))
k=1

where « is the weights for each task k and L is the
cross-entropy loss.



Incorporating Adversarial Training
Just like GAN to learn a generative dist pg(x) that matches the real
data dist Pya¢a(x) via discriminative model D.(Goodfellow, Bengio,

and Courville 2016)
More specifically, G generates samples from the generator
distribution pg(x). and D learns to determine whether a sample is

from pg(x) or pdata(x).
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Figure 3: Adversarial shared-private model. Yel-
low and gray boxes represent shared and private
LSTM layers respectively.



Adversarial Loss L4,
» prevent task-specific fea- ture from creeping in to shared space.

K Ny
L;9, = min )\max dk log[D(
sav = min | Amax(3_ 3 o loglD(E ()
» shared LSTM generates representation to mislead the task
discriminator.
» the discriminator tries its best to make a correct classification
on the type of task.



Summary

Five stars , my baby can fall asleep soon in the stroller

(a) Predicted Sentiment Score by Two Models (b) Behaviours of Neuron h} and hj,



Materials and Reference |

» The teaching video of transfer learning and attention
mechanism by Lee Hung-yi:
https://www.youtube.com /watch?v=qD6iD4TFsdQ and
https://www.youtube.com/watch?v=hYdO9CscNes

» This blog
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
introducing LSTM is very easily understandable.

» This blog has a comprehensive introduction to Transformer
family including Attention and self-attention
https://lilianweng.github.io/posts/2020-04-07-the-
transformer-family/
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