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MTL in Deep Learning
▶ Different from single task learning
▶ Training multiple tasks simultaneously to exploit task

relationships. (Rusu et al. 2016)

Figure 1: figure form vandenhende(2020)



Exploit Task Relationships

▶ The key challenge in multi-task learning: Exploiting
(statistical) relationships between the tasks so as to improve
individual and/or overall predictive accuracy (in comparison to
training individual models)!



End-to-End Multi-Task Learning with Attention (S. Liu,
Johns, and Davison 2019)

▶ The attention module is designed to allow the task-specific
network to learn task-related features, by applying a soft
attention mask to the features in the shared network.

The Architecture Design
▶ MTAN consists of two components: a single shared net- work,

and K task-specific attention networks.



The Architecture Design(Cont.)
▶ each task-specific network consists of a set of attention

modules
▶ The attention applies a soft attention mask to a particular layer

of the shared network, to learn task-specific features.
▶ The dependence of attention on features learned jointly to

maximize the generalization of the shared features across
multiple tasks.



Task Specific Attention Module
The task-specific features â(j)

i computed by element-wise
multiplication of the attention masks with the shared features:

â(j)
i = a(j)

i ⊗ p(j)



The Model Objective

Ltot(X , Y1:K ) =
K∑

i=1
λiLi(X , Yi)

Yi as one task with total three tasks for evaluation.

For semantic segmentation:

L1(X , Y1) = − 1
pq

∑
p,q

Y1(p, q) log Ŷ1(p, q)

For depth estimation:

L2(X , Y1) = 1
pq

∑
p,q

|Y2(p, q) − log Ŷ2(p, q)|

For surface normals

L3(X , Y3) = − 1
pq

∑
p,q

Y3(p, q) log Ŷ3(p, q)



Evaluation

Dynamic Weight Average (DWA)

λk(t) := K exp(wk(t − 1)/T )∑
i exp(wi(t − 1)/T ) , wk(t − 1) = Lk(t − 1)

Lk(t − 2)
Here wk(·, ) calculates the relative descending rate. T represents a
temperature which controls the softness of task weighting. T
enough large, then λi ≈ 1. softmax op multiplied by K, ensures that∑

i λi = K





Attentive single-tasking of multiple tasks (Maninis,
Radosavovic, and Kokkinos 2019)

The single-tasking multiple tasks modifies its behavior through
task-dependent feature adaptation, or task attention. It gives the
network the ability to accentuate the features that are adapted to
tasks.



Task-specific feature modulation
two tasks A and B that share a common feature tensor F (x , y , c).
c = 1, 2, · · · , C are the tensor channels.Assume subset SA is better
suited for task A.

FA(x , y , c) = mA · F (x , y , c) (1)

where mA[c] ∈ {0, 1}

Residual Adapters
shunning features that do not contribute to the task.

LA(x) = x + L(x) + RAA(x), (2)

where L(x) denotes the default behavior of a residual layer, RAA is
the task-specific residual adapter of task A. and LA(x) is the
modified layer.



Adversarial Task Disentanglement
▶ a shared representation has better memory/computation

complexity, every task can profit by having its own ‘space’.
▶ gradients used to train the shared parameters are statistically

indistinguishable across tasks.



Adversarial Task Disentanglement(Cont.)

The optimization problem:

min
wD

max
wN

L(D(gt(wN), wD), t),

where gt(wN) is the gradient of task t computed with wN , D(·, wD)
is the discriminator’s output for input. And L(·, t) the cross-entropy
loss for label t that indicates the source task of the gradient.



Summary





Gradient Adversarial Training of Neural Networks (Sinha et
al. 2018)

Adversarial defense
The adversarial gradient signal ϱ flowing forward in the main
network can be shown to be,

ϱl+1 = −w l+1ϱl ⊙ σ′(z l) (3)



GREACE: adapts the cross-entropy loss function
▶ add weight to the negative classes whose gradient tensors are

similar to those of the primary class.
▶ The weight is evaluated using soft-max distribution from the

auxiliary network. In math,

∇aĈ → ∇aC + β · σ(â)1ŷ ̸=y (4)

where a, â are the output activations from the main and
auxiliary network respectively. σ is the soft-max function, β is
a penalty parameter.

The combined objective for adversarial defence is:

min
θ

Ĵ(θ, x , y) + α max
θ̂

J(θ̂, ∇J̄(θ, x , y), y).

The Ĵ denotes the GREACE, J denote the standard cross-entropy
and J̄ indicates the masked cross-entropy, and α is a weight
parameter for the auxiliary network’s loss.



Different scenarios

Knowledge distillation
▶ student’s output distribution S(x)
▶ teacher’s output distribution T (x)
▶ A solution for student, S(x) which jointly minimizes the

supervised loss and ∇S(x) = ∇T (x) exists.
▶ GREAT procedure: mimics GAN training procedures
▶ Objective to be optimized is:

(1 − α) min
θ

J(θ, x , y) + α min
θ

max
ω

D(θ, x , y)
(5)

D(θ, x , y) = Et∼∇T (x) log f (t, ω) + Es∼∇J(θ,x ,y) log(1 − f (s, ω))
(6)



Multi-task learning

Gradient-alignment layers(GAL) are placed after the shared encoder
and before each of the task-specific decoders. And they are only
during the backward pass, i.e. the GALs are dropped during forward
inference.



Multi-task learning(Cont.)



Results



Summary

▶ strong defense to both targeted and non-targeted adversarial
examples

▶ can easily distill knowledge from different teacher networks
without heavy parameter tuning

▶ aid multi-task learning by tuning a gradient alignment layer.
▶ which is similar to the architecture in (Ganin and Lempitsky

2015)



Adversarial Multi-task Learning for Text Classification (P.
Liu, Qiu, and Huang 2017)

▶ Hazard: the shared and private latent feature spaces from
interfering with each other. And it will cause the capacity of
shared space wasted by some unnecessary features.

▶ Proposed adversarial training to ensure that the shared feature
space simply contains common and task-invariant information.



Multi-task Learning for Text Classification
1. Fully-Shared Model (FS-MTL)
2. Shared-Private Model (SP-MTL)



MTL with LSTM blocks:

sk
t = LSTM(xt , sk

t−1, θs), (7)
hk

t = LSTM(xt , hk
t−1, θk) (8)

▶ feed into corresponding task-specific softmax layer for
classification.

LTask =
K∑

k=1
αkL(ŷ (k), y (k))

where α is the weights for each task k and L is the
cross-entropy loss.



Incorporating Adversarial Training
Just like GAN to learn a generative dist pG(x) that matches the real
data dist Pdata(x) via discriminative model D.(Goodfellow, Bengio,
and Courville 2016)
More specifically, G generates samples from the generator
distribution pG(x). and D learns to determine whether a sample is
from pG(x) or pdata(x).



Adversarial Loss Ladv
▶ prevent task-specific fea- ture from creeping in to shared space.

Ladv = min
θs

λ max
θD

(
K∑

k=1

Nk∑
i=1

dk
i log[D(E (xk))])


▶ shared LSTM generates representation to mislead the task

discriminator.
▶ the discriminator tries its best to make a correct classification

on the type of task.



Summary



Materials and Reference I

▶ The teaching video of transfer learning and attention
mechanism by Lee Hung-yi:
https://www.youtube.com/watch?v=qD6iD4TFsdQ and
https://www.youtube.com/watch?v=hYdO9CscNes

▶ This blog
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
introducing LSTM is very easily understandable.

▶ This blog has a comprehensive introduction to Transformer
family including Attention and self-attention
https://lilianweng.github.io/posts/2020-04-07-the-
transformer-family/

https://www.youtube.com/watch?v=qD6iD4TFsdQ
https://www.youtube.com/watch?v=hYdO9CscNes
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://lilianweng.github.io/posts/2020-04-07-the-transformer-family/
https://lilianweng.github.io/posts/2020-04-07-the-transformer-family/
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